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EFFECT OF SIMPLE STRSS ON THE
GLASS TRANSITION OF POLYMERS AT HIGH PRESSURES

Abstract

Experimental studies, which have been carried out in this laboratory, showed
the yield strength in tension, compression, and shear in the ruboery and the glassy
states increased with increaing hydrostatic pressure Moreover the Youngs modulus
also increased with pressure and the amount of the increase acrcss the glass
transition temperature(Tg) at a gwven pressure can be as large as three order of

magnitude mn case of elastomers.

An extension of Gibbs-Dimarzio theory is proposed to acccunt for the
effect of applied stress on the giass transitior temperature d‘ glass forming
polymers. When a simple stress, such as tensile, compressive or snhear stress <
applied to a polymer, the Tg will decrease. compared to the polyme: athiu' app ea
stress. A glass forming polymer in the wvicimity of the transitior oo ° . nave
differently than what is predicted by rubber elasticity The partuor functor taxing

into account the effect of stress is suggested to be
r = ZWIf. n lexpl-pPV+U-oVel]

where the strain ¢ = z(f—fo) in which f and fo are the fraction of flexed bonds
with and without stress, respectively. Furthermore, by this model. the Youngs
moduius across the transition, EL and EG, can be evaluated. The Youngs modulus
increases with increasing pressure at lower and moderate pressure range but the

increase is rather small at very high pressure range
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1. Introduction

Experimental studies have been carried out in this laboratory in last several
years on the effect of hydroststic pressure on tensile, compressive and shear
stress—strain behavior of polymers, including elastomers in the rubbery and the
glassy states“_m)as shown in Fig.1. It was observed in all polymers tested that
yielding occured under all three stress conditions and the vyielding strengths
increased with increasing pressure. It was alsc observed that the Young's moduius
and the shear modulus increased with icreasing pressure and underwent abrupt
changes across glass transition pressure (Pg). Specially the change is as much as
three orders of magnitude in the case of elastomers. We adopt the hypothesic that
yieiding occurs as the result of lowering of glass transition temperature (Tg) due to
the applied Ioadm. A similar concept is employed in free volume theories of
yielding‘”‘m. That is, yielding OCCu}es if the fraction of free volume reaches &
certain value. Under a simple compressive stress, for instance, the fraction of free
volume increases as a result of decrease in the total volume under the compressive

stress.

in this study, the effect of tensile. compressive and shear stress on the
glass—transition behavior of glass forming—polymers and its related properties are
investigated on the basis of Gibbs-Dimarzio (G-D) theory which is based on the

. . {10,13-17
statistical mechanics .

The G-D theory takes into account specific
configurations of polymers, making it possibie to express the thermodynamic
quantities as a function of molecular parameters, such as flexed energy €. hole
energy Eh, coordination number z, degree of polymerization x, etc. In addition. 1t is

. : ‘ (13.14)
also a function of an intensive parameter of the system, temperature T '

The
extension of the theory to incorporate the effect of pressure P was accompiished
by use of "iscthermal-isobaric” partittion function of the system. The Gibbs free

energy can then be obtained in terms of the internal parametrs, f and Ny and the

. . (18} ‘ , :
intensive parameters T and P ~, where f is the fraction of flexed bonds and "s is

the number of unoccupied sites. According to the theory, the second order

transition temperature T2 corresponding tc zero configurational entropy increases




with incresing pressure but approaches a finite asympototic vaiue at very high

pressures.

From thermodynamic considerations, it has been shown that for the iso-—¢
i

plane (a "special glass” formed under pressure P) the transition line in the STP space
]

. . (10
is given by
apP dT ds

—a (n
AC, VTha (e €, -a C )V

in G-D theory, both f and n, are assumed frozen in when cooled down along a

. (15)
isobar to glass state ; therefore G = 0, CPG = 0 and we have

dT VTha

—— (2)
daP
ACp ]

only when dS = 0. Owing to the argument that Eq (2) holds for an iso—§ transition,
this result indicates that the iso~} transition stems from a constant entropy process.
Moreover, allowing for a variation of the fiex energy A€ for glasses formed at
different pressures, a better agreement between the experimental data and

. L . (1
theoretical pridiction has been achieved 0).

The effect of tensile, compressive and shear stess superimposed on
hydrostatic pressure on the transition temperature will be determined by further

modifying the Gibbs-Dimarzio theory. The Young's modulus (E} can also be calculated

at various pressures and temperatures.

2. Theory
A Fundamental

in the G-D theory, a polymer chain s cut into segments, each of which

occupies one site of the lattice. For the hquid state, the configurational entropy SL(T)

of a system of n polymer molecules with x segments and no empty sites related
X

(o

to the number of possible configurations, Wif, no). may be witten as




"

Ca

AT

S =kinW ' (3)
Vo z-2 Vo /nSx In([(2/2-1) x+1])[2-7])
=kn x{-—InS _+{(—)/mr—- + :
v 0 v, oS5, «x x
x-3 (z-2) (7-)
+(—) (f/ﬂ[———f‘_]-/nU-f])]
x

In Eq(3), k is Boltzman constant, T the absolute temperatue, Vo = nO/(xnx+no), Vy =

1-V., S = zn /[(z-2)x+2]n +zn ), S = 1- S and f fraction of flexed bonds
0 0 0 x C X 0

. . . ‘ L, 13
with rotational isomerism (Rl} approximation — assumed.

The usual thermodynamic theories of simple liquid bodies specify their state
by the volume only; whereas in the case of a solid body besides the volume the
shape is also taken into account and specified by six components of strain tensor.
Inasmuch as no distinction of a gualitative character can be made between a solid
amorphous body. ie a supercooled liquid which is usually considered a meta-stable
state, and .a liquid in a state of absolute thermodynamical equilibrium, 1t is clear that
dealing with such a liquid we are, on one hand, entitled to make statistical
thermodynamics calculations and, on the other, compelled to take intc account not
only the volume variation but also the complete strain tensor associating the iatter

. . _ (18
with the corresponding elastic stress

. . . L (19
The Euler's relation for a system of continuous medium is given by
0 O
U=TS+uN+V T ¢ (4)
0 iy u

. . . . 0 . .
where VO is the volume of the system in some fiducial state, T Piola-Kirchoff
I

0 . . .
stress tensor and e J the Lagrangian strain tensor. Eqg.(4) may also be witten, by
[}

, , : .20
transforming the deformation energy term to Eulerian representation

U=TS+uN+Vt e,J (5)
ot
in which t and ¢ represent respectively the Cauchy stress tensor and Eulerian
0! J]
strain tensor. The strain energy term in Eq.(5) represents the energy produced by all

possible combinations of stresses.

When a tensile stress o (or oT), a compressive stress ¢ or a shear stress 7
[

applied to the system, the term Vt ¢ in EqQ.(5) reduces, respectively, to
o




U=TS-PV+oVe+uhN (6)
=7Ss- - 7
U=TS-PV +o V e ~ulN (7)
=TS-PV N 8
USTS-PV +1V y+u (8)

With regard to G-D theory under the Ri approximation, the energy of a system
. {15)
is
U=d+n (x-3)[fe . (1-f) 1:l (9)
X
where ¢ is the hole energy, € and € the higher and lower energy level
2 1

respectively, and f the fraction of segments st € 5

When a loading is applied to a glass forming polymer. either in tension,
compression or shear, a certain amount of work will be done on it In the vicinity
of its transition, the polymer system may absorb this work to increase its energy.
This pridiction is unlike the situation of a polymer in highly rubber—elastic state that
it does not incur any energy change when stretched but behave as the so-callied
entropy spring(zn. As far as the Rl approximation is concerned, ignoring the change

. of the hole energy part & on account of a negligible variation of voiume, the
absorbed energy may increase the fraction of segments in higher energy level
Representing these fractions with and without load by f and fo’ we have the energy
increase AU as .

AU~sz+(7-f)51-f062~(7-/0)€1 (70)
-(f~f0) (Ez-e 1)=AfAe |
Eq{10) gives a clue to express the tensile strain energy in Eq.6) by zoV(f—fo), In
other words,

AL
e=t (f-f )=— (17)
o

As has been noted for Eqs.(6} and (S), the introductioin of the effect of

tensile stress into G-D theory can be achieved by means of a "isothermal-iscbaric—

isotensile” partition function of the form
r=% W(f,no) exp[—a{PV+U(f,no) -oVe}l] (12)

£n

=Y Wexpl[-8 {PCN0+U-0CNOE (/-fo) 1]

o
Through the Lengendre's transfomation 9)‘ we obtained the Gibb's free energy

associated with T by

I R P TR N S TS N O
DR - e
..
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P —— LARS Sath Jhets Snge)

G(T.P,o)=U[T.P,o)=uN=U~+PV-0Ve-TS=-kT/nl (13

The summation over f and no in Eq(12) can be replaced by their maximum values

. . . . . (22) .
without introducing detectable errors in the logarithm of ' . The maximum terms

can be obtained by differentiating with respect to f and ny 8

a/nWw  dU afo
-B—+BoCN_E(1-—)=0 (14)
at 0 af
a/nW U
-B—-BPC+BolE (F-f ) =0 (15)
an on c
0 0
For solving Eq (14), the successive approximation technique is employed. As
ot
0
the first approximation., assuming —=0 in Eq {14), we get an equation for f
' 31" max
llater denoted by f)
f -(e_-€ )+oCN E/(x-3)n
max 2 1 0 X
=(z-2)exp( p (16)
1-f kT
max
or
-A€ +oCN kI (x-3)n )
x
(z-2)exp[ ]
kT AB
f= = (17)
-A€ +oCNOE/(x~3)n T+A8
x
1+ (z-2)exp[ ]
kT

where A=(z-2)exp(-A€ /kT) and 8=exp[oCN0£/(x—3)n kT]. Neverthiess. the f for
X [

the fiducial state, when the tensile load is released. shouid be
(z-2) exp (-A € [kT) A
o= = (718
1+ (2-2)exp (-A€ /kT) 1+A
Combining Eqgs. (17) and (18) and differentiatig. it can be shown that

af 1+A B
a«o

Substituting Eq.(19) for — in Eq{14) as the second approximation, we have
ot

(79)

A8
1

f=
7*"4431

where

L R A
- s e e
- i .

L T T T A SIS A
CANS PO e A A RS T = e
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aCNOE

1+AB 27
B =expl {7-( )}
! kT (x-3) n 7+4 P

X

Eq{15) yields an implicit equation for (no)rna . e,
x
3 PC_ oC_&_(f-f)
n T O o

/n(V zIZ~1/S z-2) —s 2_ —_—
0 0 kT * kT kT
E PC_ o C E _(f-1)
2/2~1,, 22, h_ 2 € CCC 0
In(v /S y-—S "- + =0
0 0 kT % kT kT
E PC_ 1C t _(f-f)
2/2~1 -2 h 2 S S8 c
/n(V S Y -—8 fe—t———=p (271)
0 0 kT % kT kT

where CT . CC and Cs are the unit cell dimensions under tensile, compressive and

shear stresses, respectively. Or, in a dimensionless form,

s?ep o,
- - X e
1n(v ¥¥ s T e — e —(f-f ) =0 (22)
0 0 re 77T O
e e e e
where
oCk PC
——=g , ——=P (for tensile stress)
Ae & A€
ocCete PCe
=9 , —=P (for compressive stress)

A€ € Ae ¢
rC ¢ PC

S°S S

=g , =P (for shear stress)

AE e AE e
se S, kT g
—=f , —=§, —=] , —=p (23)
£ e kN Ae © n

h a o}

With the dimensionless groups introduced as in Eq.{23), Egs.(3) (17), (18i (19). (20)
are also converted to dimensionless forms and a single plot of EQ.(22), as shown in
Figs. 2 and 3, was made possible for each of three stress conditions because of

the dimensionless quantities ¢ and P . From these dimenssionless equations, the T
e e

]

vs P curves of the equilibrium transition lines under infinitely slow cooling rate (S
e

0) are produced with oe=0 000001. 0.1, 0.2, 0.3. 04 and 05 and plotted in Fig

(9}

{for first approximation) and Fig 3 Ifor second approximation). Values of 2, x and E
e

1
are taken respectively to be 4, 1640, 0.945 for polystyrene“ ), The discrepency

between the two approximations is not remarkable for low ¢ values and with
e




regard to the first approximation, the decrease of T is supposed to be inearly
e

related to the increase of stress as T = 05(1-¢ ) T vs P curves with S not
e € e

e
(1o . v

equal to zero can also be produced ~, but. for non-equilibrium transition. the glass

formed will continuousiy relax toward the equilibrium state with a rate depending

. . (23)
upon the relaxation time .

The yieid stress o in EqQ(22) assumes the same value given under the same
€
condition of T and P = O (atmospheric condition) and. therefore. we obtan
e e

OCTET=OCCCEC=TCSES

) 2
04 0C 12

—C =—C _=—C

ET E ¢ G S

o e ¢ C

—=—=—= (—) (24)
o e £ Co

n which a hnear elastic behavior with EfEC:E t1s assumed If the pressure—

. . (3) .
dependent yield criterion proposed by Pae ™ is adopted. we obtain

C. . .
[} 7 2
—=2(1+p) (—-a )
c ~ 1
V3
CC H/3+a1 ,
—=(—)
T 1iv3-a
1

where C=CS {no volume change under shear loading) and a, a material constant. If v
= 042 and a = -0.023 are used. CT = 1024C, CC/CT = 0.825, Ec/z* = 1.08 and
chzT = 1574 are obtaned.

~

B. Evaiuation of the Youngs modulus

We have been carrying out experimental studies on the stress—stran behavior
{€.7.24)
of elastomers at high pressures for last several years “"" The elastomers studied
(=]
include a polyurethane elastomer. Solithane 113 with T =-20 C. The stress-—strain
g

measurements were made as a function of pressure. temperature and aging time
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Figure Caption

Fig.1 : Tensile stress vs stretch for solithane 113 at various pressures.

Fig.2 : Theoreticai curves of Te vs Pe with § = 0 and 0 = 00001, 0.1, 0.2,
e

0.3. 0.4, 0.5 based on first approximation.

Fig.3 : Theoretical curves of Te vs Pe with § = 0 and ¢ = 0000001, O.1.
e

0.2, 0.3. 0.4, 0.5 based on second approximation.

Fig.3a : Te vs Pe curves of Fig 2 with scale enlarged; ¢ = 0.05, 0075, 01
e

ng.4 : Schematic iso-tensile stress surfaces in STP space.

Fig.5 : Incipient Young's modulus of glass (EG ) and fiquid (EL Jvs P with o0 =
. e e e e

Fig.6 : i
Fig.6 EGe (ELe) vs Pe with o,

0.1

Fig7 :E_ [E ) vs P with ¢ 0.2
Ge Le e e
Fig8 :in ¢ vs P .
e

Fig.9 : Young's modulus of glass (E'Ge) vs pressure (P )
e

Fig.10 :© Youngs moduius of solithane 113 vs temperature at various

pressures.
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The configurational heat capacity of the liquid is
as
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Based on the G-D theory, in the glassy state, f and "y being kept constant

with temperature, both CpG and s vanish. The variation of the transition temperature
Tg with tensile stress can be obtained by

a7 EN) =N
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Considering ¢ and Ve are mutually conjugated intensive and extensive gquantities in
the term oVe of Eq.(13], we have
3s d(Ve)

. Thereby.,
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induced glass transition Yielding under compressive and shear stresses are
natually pridiced by the modified G-D theory developed in this paper since the
strain energy increases. whatever the stress state is, tension, compression or shear

and consequently the glass transition temperature decreases.

In Fig. 2, where Te Vs F’e for wvarious o are plotted, we consider
schematically a polymer at certain temperature Ti and pressure Ps in glassy state
with the reference (transition) line ¢ = 0. This point represents the state of glass
which was formed at pressure Pi without applied stress and is further cooled to T!
in the glassy state. When a tensile, compressive or shear stress is aplied to this
glass, the reference line or the transition line (Te Vs Pe with o, X 0 itself) will shift
downward. |f the stress is increased and the stretch is carried on at an infinitely
slow rate (a quasi—static loading), the glass yields at o = o, which correspods to the
stress—induced transition. If the stress is increased at a rate higher than infinitely

slow rate, the glass will yield at o= 0 > ¢ as shown in Figs. 2 and 1.
y 1

« As a result of the fact that all curves in Figs. 2 and 3 are produced with §
= 0 corresponding to a glass transition at T2 which is about 50 dgrees below

Tg“s), the dimensionless Young's modulus in Figs. 5. 6, 7, 9 is aiso produced on

this basis. However, configurational entropys will take on some value for most
experimental situations where cooling rate or the loading rate is greater than the
infinitely slow rate. Consequently, transition occurs with S not equal to zero. The
Young's modulus associated with § X 0 can be produced“m, adopting the same

caiculation procedure.

Appendix

The thermal expansion coefficient above the transition Tg is given by




the same pressure P but with o approaching zero. in other words, fc = f. but fGO
for the glassy state with stress removed is different than fc for the rubbery state
‘without stress which must be caiculated by Eq(18). So that, the strain may decrease

from E(f—fo; to s(f—fGo) = E(f—fa_o) in the amount of several decades, whose ratio
f-f
0

f-f
0=0

is pressure dependent as shown by the curve ing vs P in Fig 8.
e

The Young's moduius based on the strain of glassy state is defined by

7 3 a(f—fG o)
==} (32)
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in which, — adopts the same formula as Eq.(26) and
do
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We denote this uitimate modulus of glass by EG’ and the dimensionless parameter

associated with it by EGe‘. As observed in Solithane 113, the Young's modulus

increased with about three orders of magnitude across transitionm. From Figs. 5. 6
and 7. we see the EGe and ELe are of the same magnitude. However, in Fig. 9. it
turns out that EGe‘ is greater than ELe by such an amount of order of magnitude and
EGe‘ increases about three times with the pressure F‘e increasing from 0 to 4. This

result is comparable with experimental data on Solithane 113 in Fig. 10.

3. Glass Yielding

It is well known that the glass transition temperature is reduced under a
. (25) . . .
tensile stress o and experimentally the deformation of a glass formed without a
tensile stress at a temperature below T will be elastic at small strain, then followed
9

by a yield point and plastic deformation, which is similar to the deformation in the

(7) . . . _ _
rubbery state . The vyield point under tension is essentially a strain or stress-
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Assuming the rate of variation of € with respect to T just across the transition

de
G
equal to zero because of the freezing in of internal parameters, i e, —:-Jpa=0 and
o7
defining
7 a‘G]
P.T
EG d0
through Eq.(25). one finds
Jr 1 1 de a(f-f)
—= () = () (30)
do EG E oT EG EL aT
oT atf-f )
Thermodynamic calculations of — and are given in appendix. This enables us

do o7
to obtain EG from EL.

Introducing more dimensionless groups as

7 Ae 7 Ae
’ = (37)

E .2, E_ .2,
Le Ct'E, e CEUE_

the above equations may be normalized and the curves of ELe vs P and EG vs P
e e

e

are produced as shown by Figs. 5, 6 and 7.

However, the EG so far obtained is the result of an "incipient transition” from
EL, since, just across the secondary transition, € is supposed to be equal to €. i

e, eG=eL=£(f—fo). This is because both . and € are estimated on the basis of

liquid. In fact, below the secondary transition, the glass with the constant V and S

continues to undergo a change in s until it reaches E(fG—fGO) which is calculated on

the basis of glass. The strain of a glass eG=E(fG—fGO) can be clearly illustrated using
Fig. 4, as
f =t _[PoT)=f[T (P.0),0.P)]
G G g
= T (P,0),0,P]=f[T (P),P
feo=olol g( 0).0,P]=f( g( ).P]
That is, fG is equai to the fraction of the flexed bonds at the transition temperature

'l'g under pressure P and tensile strss o, whereas the fGO is the fraction at T under
g
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under a constant rate (.02o /mim), as in Figs. 1 and 10. Some of these tests were
carried out under glassy state and some in the rubbery state. or a "solid-like liquic”
state or solid amorphous body whatever it is termed. From the stress—strain curves,
we were able to determine the Young's modulus. !t is true that the material behaves
in a viscoelastic manner. Howevere, the solid amorphous bodies are distinguishable
from ordinary liquids by their relatively longer relaxation time“S). E is measured for
given conditions of experiment, such as P, T, strain rate, and under proper
assumptions, such as ignoring time effect iike creep and stress relaxation during the

short time period of the test

The Young's modulus of the liquid is defined by

do
E =—]
L Je P.T
7 3 3048 )
EL—ao]RTge 30 22)

in which, from Egs.(17) and (18),
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Furthermore, they are coupled with another derivative
a(f-fo)
(F-f ) +o——
7 9V VOCE 0 do
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For evaluating Young's modulus of glass, we propose two stages of

calculation. Firstly, consider a second order transformation,

aG aG G
v=—]_ = -§=—] -Ve=—] _
ap 1.0 a7 P.c Jo P.T
along the transition line, we have V. = V_, § =S _, and (Ve) =(Ve) . therefore, e =¢
L G L G L G L G

or de =de . This leads to
L G
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